Irritable Bowel Syndrome: from pathophysiology to treatment

Prof Benoit Coffin
Service de Gastroentérologie
AP-HP Hôpital Louis Mourier, Colombes
Université Denis Diderot Paris 7
INSERM U 987
Disclosures

- Shire
- Almirall
- Cephalon-Teva
- Mundipharma
- Mayoli Spindler
- Abbott
Irritable Bowel Syndrome

IBS cannot be resumed as colonic spasms occurring in patients with anxiety-depression and hypochondria.
Old concept

IBS is a motor disorder
Old concept: motility disorder

- Abnormal motility: non-specific
- Jejunum, ileum, colon
- Present in 40 to 50% of patients
- Therapeutic target: antispasmodic agents
 - "Ancient" drugs: 1980…
 - Poorly evaluated before launching
- Meta-analysis (poor quality of studies)
 - 3 positive, 1 negative
 - Decrease pain intensity: mebeverine, trimebutine, otilonium

Poynard et al, Aliment Pharmacol Ther 1994
Jailwala et al, Ann Intern Med 2000,
Lesbros-Pantoflickova et al Aliment Pharmacol Ther 2004
Reassessment of antispasmodic according modern criteria:

Chassany et al. Aliment Pharmacol Ther 2007

Phloroglucinol

Alverine Citrate + simethicone

Wittmann et al. Aliment Pharmacol Ther 2010

Other antispasmodics: generic drugs ➔ never reassessed!
New concept
IBS : a multifactorial pathology

Brain- gut axis disorder
IBS: a multifactorial pathology

Brain-gut axis disorder

Visceral hypersensitivity

Inflammation

Dysbiosis
Abnormal microbiota

Increase in intestinal permeability

Motor disorder
Visceral hypersensitivity

- Distension tests
 - Hypersensitivity
 - Lower pain threshold: 60 % of the patients
 - Allodynia + hypersensitivity
 - 80 % of the patients

Mertz et coll 1995
Where is the main abnormality?

Peripheral receptors:
- content
- permeability
- microbiota
- inflammation

Afferent nerves?

Medullar level?

Brain?

Sensori-motor reflex
Relationship between intestinal permeability and sensitivity to distension

Intestinal permeability

<table>
<thead>
<tr>
<th>Lactulose/Mannitol</th>
<th>Normal</th>
<th>SII</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abdominal Pain

Score EVA (viscérale)

<table>
<thead>
<tr>
<th>Score EVA</th>
<th>Normal</th>
<th>SII</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zhou et al. Pain 2009
Is IBS an inflammatory disorder?

- **Post-infectious IBS**:
 - Definition: onset of IBS symptoms after an acute bacterial gastroenteritis

- Symptoms occurrence: 6-12 months later

- Clinical manifestation:
 - Diarrhoea predominant IBS

- Main pathological abnormalities
 - Lymphocytes infiltration
 - Increase in mast cells
Increase in mast cells

- Jejunum
- Ileum
- Colon

Healthy subjects IBS

Guilarte et al Gut 2007
Weston et al, Dig Dis Sci 1993
Barbara Gastroenterology 2004
Relationship between mast cells and pain

Barbara G et al, Gastroenterology 2006
Therapeutic consequences
Steroids

- Budesonide?
- No study.

Dunlop et al, Aliment Pharmacol Ther 2003
Randomized study vs. placebo
20 patients
Mesalasine 2.4 g/d, 8 weeks
No effect on symptoms
Decrease in inflammatory cells

Corinaldesi et al, Aliment Pharmacol Ther 2009
Microbiota

- There are more bacteria in the colon than cells in the whole organism

Rajilic-Stojanovic Gastroenterology 2011
Microbiota in IBS

• Recent data demonstrate that there is a dysbiosis in IBS patients
 – Mainly qualitative :
 • Microbiota composition is different in IBS in comparison to controls
 – Increase in firmicutes, decrease in bacteroidetes
 – But no specific profile
 – Also quantitative in some patients :
 • Increase in the total number of bacteria : small bowel bacterial overgrowth
 – Case-control study : RR = 3.45
Functional dysbiosis

Chassard C et al, Aliment Pharmacol Ther 2012
Consequences of this dysbiosis

• Poorly evaluated
• Main function of bacteria
 – Fermentation of non absorbable carbohydrates (starch, oligosaccharides)
 – Production of gas and short chain fatty acids
• In animal models, pronociceptive effects of
 – H_2S, CH_4
 – Butyric acid

Soret R et al, Gastroenterology 2012
Therapeutic consequences

- Effect on intestinal permeability
 - No drug available

- Dysbiosis
 - Probiotics
 - Antibiotics
Dysbiosis: probiotics

Mechanisms of action?
Regulatory effect on flora?
Anti-inflammatory effect?

Meta-analysis: RR 0.71 (IC95%: 0.57-0.88)
Number need to treat: 4 (IC 95%: 3-12)

O'Mahonny et al, Gastroenterology 2005
Moayyedi et al, Gut 2010
Bacterial overgrowth: antibiotic

- Rifaximin
- 550 mg x 3, 15 days
- Non constipated IBS
- 1260 patients
- Significantly better than placebo
 - Overall well being
 - Pain
 - Bloating
 - Delta: 9 to 10 %

Pimentel et al, NEJM 2011
Where is the main abnormality?

Peripheral receptors:
- content
- permeability
- microbiota
- inflammation

Afferent nerves?

Medullar level?

Brain?

Sensori-motor reflex
IBS: spinal hyperexcitability
2 patients over 3

Healthy subjects

IBS Patients

Coffin et al, 2004
Spinal hyperexcitability

- A reflect of diffuse hyperalgesia
- A marker of IBS severity
 - Facilitation: 381 ± 46
 - Inhibition: 310 ± 63
- Could explain associated comorbidities
 - Fibromyalgia…

Bouhassira et al, 2013
Brain control of visceral pain

- **Functional methods:**
 - Functional MRI
 - Pet Scan

- **Visceral stimulations:**
 - Activation of:
 - Thalamus
 - Orbito-frontal cortex
 - Insula and cingular cortex.
 - Control of pain and emotions

Limbic system

Moisset et al, Eur J Pain 2009
Pre-gabalin and rectal sensitivity in IBS

Responders: 57%
Progressive increase of doses → 150 à 450 mg/d
Poor tolerance!

Houghton et al, Gut 2007
Anti-depressive agents

- Mechanisms of action:
 - Central and peripheral modulation of pain control mechanisms.
 - Associated mood disorders: anxiety and depression
- Serotonin Reuptake Inhibitors:
 - Conflicting results
 - paroxetin, fluoxetine, citalopram
- Tricyclic agents: positive results
 - Imipramine, desipramine
 - Clinical studies
 - Mechanical studies
Anti-depressive agents

• Explain why!
 – Action on pain and not on psychic pain requiring psychiatric treatment….
 – Compliance ++++

• Prescription as in neuropathic pain
 – Low dosage : 25-50 mg imipramine
 – Progressive increase to limit side effects

• Efficacy :
 – Time required : 2-6 weeks
 – If efficient, duration of treatment : 6 months ?
Hypnosis

Pain

Bloating

Long term efficacy (18 months):

< 50 years: 95 %

> 50 years: 20 %

Whorwell PJ et al, Lancet 1984
Whorwell PJ et al, Gut 1987
Future ? Action both peripheral and on nerve afferences : Linaclotide

- Guanylate cyclase agonist
- IBS-C
- Phase III positive
- Mechanisms of action
 - Colonic secretion
 - Inhibition of colonic nociceptors in mice

Johnston, Gastroenterology 2010
Castro J et al, Gastroenterology 2013
Conclusion

• One IBS : No
• Different IBS : Yes
• Main difficulty : in a given patient, it is not possible to determine the main pathophysiological process and thus to use a specific and targeted treatment.
• Future :
 – Identify other mechanisms :
 • food (FODMAPS), bile acids…
 – Identify biological markers